

Multiple Choice Q&A

1.	Which	field	of study	forms	the	foundation	of	quantum	computing	5 ?
----	-------	-------	----------	-------	-----	------------	----	---------	-----------	------------

- A) Computer Science
- B) Mathematics
- C) Physics
- D) Biology

Answer: C) Physics

2. What is the fundamental unit of classical computing?

- A) Byte
- B) Kilobyte
- C) Bit
- D) Megabyte

Answer: C) Bit

3. How are qubits different from classical bits?

- A) They can only store two states.
- B) They can store multiple states simultaneously.
- C) They are larger in size.
- D) They are slower in processing.

Answer: B) They can store multiple states simultaneously.

4. What is the term for the logic opera	tions performed on classical bits?
A) Classical Operations	
B) Binary Operations	
C) Quantum Operations	
D) Boolean Operations	
Answer: D) Boolean Operations	A Connection
5. Which mathematical concept is c mechanics, the foundation of quantum	2.0
A) Calculus	3 Demen
B) Linear Algebra	Manas
C) Geometry	ilon
D) Probability Theory	
Answer: B) Linear Algebra	
6. What is the basic principle behind perform parallel computations?	l a quantum computer's ability to
A) Superposition	
B) Entanglement	
C) Measurement	
D) Collapsing State	
Answer: A) Superposition	

7.	In	classical	computing,	what	type	of	logical	gates	are	used	for
pr	oces	ssing info	mation?								

- A) AND, OR, NOT
- B) XOR, NAND, NOR
- C) XNOR, AND, OR
- D) NOR, XOR, AND

Answer: A) AND, OR, NOT

- A) Superposition
- B) Entanglement
- C) Classical Logic
- D) Quantum Tunneling

Answer: B) Entanglement

- 9. Which branch of mathematics is extensively used in quantum computing to describe the behavior of quantum systems?
 - A) Algebra
 - B) Calculus
 - C) Number Theory
 - D) Group Theory

Answer: D) Group Theory

10. What distinguishes quantum logic gates from classical logic gates?

- A) They obey classical laws of logic.
- B) They can only process one bit at a time.
- C) They operate on qubits instead of bits.
- D) They are slower in operation.

Answer: C) They operate on qubits instead of bits.

11. How do qubits encode information?

- A) Using binary digits
- B) Using quantum states
- C) Using classical states
- D) Using hexadecimal digits

Answer: B) Using quantum states

12. Which of the following is a key feature of quantum computing not found in classical computing?

- A) Determinism
- B) Randomness
- C) Sequential processing
- D) Finite possibilities

Answer: B) Randomness

13. Which of the following is a phenomenon unique to quantum systems?

- A) Decoherence
- B) Determinism
- C) Redundancy
- D) Linearity

Answer: A) Decoherence

14. What is the primary challenge in building practical quantum computers?

- A) Limited memory capacity
- B) High energy consumption
- C) Interference from classical systems
- D) Difficulty in scaling up qubit count

Answer: D) Difficulty in scaling up qubit count

15. What role does biology play in the development of quantum computing?

- A) Providing algorithms for quantum processing
- B) Offering insights into quantum phenomena
- C) Contributing to qubit fabrication techniques
- D) Modeling quantum systems after biological processes

Answer: C) Contributing to qubit fabrication techniques

16. Which of the following describes the behavior of a qubit?

- A) It can only exist in one state at a time.
- B) It can exist in multiple states simultaneously.
- C) It can only store classical information.
- D) It cannot be entangled with other qubits.

Answer: B) It can exist in multiple states simultaneously.

17. What is the term for the process by which a quantum state becomes "locked" with another, regardless of the distance between them?

- A) Superposition
- B) Entanglement
- C) Quantum Tunneling
- D) Decoherence

Answer: B) Entanglement

18. Which of the following is NOT a potential application of quantum computing?

- A) Cryptography
- B) Drug discovery
- C) Weather forecasting
- D) Social media analytics

Answer: D) Social media analytics

- 19. What term describes the ability of a quantum computer to perform certain calculations exponentially faster than classical computers?
 - A) Quantum supremacy
 - B) Quantum advantage
 - C) Quantum efficiency
 - D) Quantum dominance

Answer: A) Quantum supremacy

- 20. What is the name of the algorithm designed for quantum computers to factor large numbers efficiently, posing a threat to current cryptographic systems?
 - A) Shor's algorithm
 - B) Grover's algorithm
 - C) Deutsch's algorithm
 - D) Simon's algorithm

Answer: A) Shor's algorithm

- 21. Which of the following is NOT a challenge in building practical quantum computers?
 - A) Maintaining coherence of qubits
 - B) Reducing interference from classical noise
 - C) Scaling up the number of qubits
 - D) Decreasing the speed of computation

Answer: D) Decreasing the speed of computation

22. What is the smallest unit of in	formation in quantum computing?
A) Qubit	
B) Bit	
C) Byte	
D) Quantum gate	
Answer: A) Qubit	Covernance
23. In classical computing, what is of logic gates?	is the term for the basic building blocks
A) Transistors	Manas
B) Qubits	ation
C) Registers	Office
D) Circuits	
Answer: A) Transistors	
24. Which of the following is a q NOT operations?	uantum logic gate used for performing
A) Hadamard gate	
B) Pauli-X gate	
C) CNOT gate	
D) Toffoli gate	

Answer: B) Pauli-X gate

25. What is the term for the process of converting classical information into quantum information?

- A) Quantumization
- B) Entanglement
- C) Superposition
- D) Quantum encoding

Answer: D) Quantum encoding

26. Which of the following is a property of qubits?

- A) They can only be in one state at a time.
- B) They are immune to environmental interference.
- C) They can be entangled with other qubits.
- D) They are larger in size compared to classical bits.

Answer: C) They can be entangled with other qubits.

27. What is the primary reason for the use of quantum computing in cryptography?

- A) Speeding up encryption algorithms
- B) Breaking existing encryption algorithms
- C) Providing more secure encryption methods
- D) Decreasing the computational complexity of encryption

Answer: B) Breaking existing encryption algorithms

28. What is the name of the prindescribes the ability of particles to ex	
A) Superposition	
B) Entanglement	
C) Tunneling	.6
D) Decoherence	, e
Answer: A) Superposition	Governance
29. Which of the following is a potents over classical computing?	ial advantage of quantum computing
A) Lower energy consumption	OU No
B) Higher memory capacity	latte.
C) Faster processing speed	
D) Reduced susceptibility to errors	
Answer: C) Faster processing speed	
30. What is the term for the phenometheir coherence and become more cla	
A) Superposition	
B) Entanglement	
C) Decoherence	

D) I difficility	D)	Tunr	neli	ng
------------------	----	------	------	----

Answer: C) Decoherence

- 31. Which of the following is NOT a key component of a quantum computer?
 - A) Quantum processor
 - B) Quantum memory
 - C) Classical controller
 - D) Quantum register

Answer: C) Classical controller

- 32. What is the name of the quantum logic gate that performs a controlled-NOT operation?
 - A) Hadamard gate
 - B) Pauli-X gate
 - C) CNOT gate
 - D) Toffoli gate

Answer: C) CNOT gate

- 33. Which of the following is a major limitation of current quantum computers?
 - A) High energy consumption
 - B) Limited storage capacity

- C) Difficulty in maintaining coherence
- D) Incompatibility with classical algorithms

Answer: C) Difficulty in maintaining coherence

- 34. What is the term for the process of "reading" a quantum state to obtain classical information?
 - A) Measurement
 - B) Superposition
 - C) Entanglement
 - D) Decoherence

Answer: A) Measurement

- 35. Which of the following quantum algorithms is used for database searching?
 - A) Shor's algorithm
 - B) Grover's algorithm
 - C) Deutsch's algorithm
 - D) Simon's algorithm

Answer: B) Grover's algorithm

- 36. What is a key challenge in scaling up the number of qubits in a quantum computer?
 - A) Increasing processing speed

- B) Reducing physical size
- C) Ensuring coherence and minimizing decoherence
- D) Enhancing classical integration

Answer: C) Ensuring coherence and minimizing decoherence

37. What is the primary advantage of quantum computing in the field of optimization problems?

- A) Faster convergence to optimal solutions
- B) Reduced algorithm complexity
- C) Elimination of classical constraints
- D) Increased parallel processing capacity

Answer: A) Faster convergence to optimal solutions

38. Which quantum algorithm is known for solving the discrete logarithm problem efficiently?

- A) Shor's algorithm
- B) Grover's algorithm
- C) Deutsch's algorithm
- D) Simon's algorithm

Answer: A) Shor's algorithm

39. What is the term for the fundamental concept that allows quantum computers to solve problems that are infeasible for classical computers?

A) Quantum advantage
B) Quantum supremacy
C) Quantum efficiency
D) Quantum parallelism
Answer: B) Quantum supremacy
40. Which of the following is NOT a potential application of quantum computing?
A) Quantum simulation
B) Secure communication
C) Classical data storage
D) Machine learning
Answer: C) Classical data storage
S Storm
41. What is the term for the process of maintaining a quantum system's state over time without it being disturbed by external factors?
A) Entanglement
B) Quantum coherence
C) Superposition
D) Decoherence
Answer: B) Quantum coherence

42.	What	type	of	quantum	error	correction	is	necessary	to	protect
qua	ntum i	nform	ati	on from er	rors du	ie to decohe	ren	ice and othe	er q	uantum
nois	se?									

A >	O1 1		, •
\mathbf{A}		error	correction
1 h		CIIOI	COLLCCTION

- B) Quantum error correction
- C) Logical qubits
- D) Quantum tunneling

Answer: B) Quantum error correction

- 43. Which concept describes the ability of quantum systems to tunnel through energy barriers that classical systems cannot?
 - A) Superposition
 - B) Quantum tunneling
 - C) Entanglement
 - D) Decoherence

Answer: B) Quantum tunneling

- 44. What is the primary function of the Hadamard gate in quantum computing?
 - A) To create entanglement between qubits
 - B) To perform a controlled-NOT operation
 - C) To place a qubit into a superposition of states
 - D) To flip the state of a qubit

Answer: C) To place a qubit into a superposition of states

45. Which phenomenon is utilized by quantum computers to perform calculations on multiple possibilities simultaneously?

- A) Superposition
- B) Decoherence
- C) Quantum error correction
- D) Quantum tunneling

Answer: A) Superposition

46. What is the major benefit of using quantum algorithms for cryptography?

- A) They can create unbreakable codes.
- B) They can factor large numbers efficiently.
- C) They use less computational power.
- D) They are simpler to implement.

Answer: B) They can factor large numbers efficiently.

47. In the context of quantum computing, what is a 'quantum register'?

- A) A set of classical bits for temporary data storage
- B) A device for measuring quantum states
- C) A system of qubits used to store quantum information
- D) A type of quantum gate used in computations

Answer: C) A system of qubits used to store quantum information

48. What type of quantum gate is a Toffoli gate?

- A) Single qubit gate
- B) Two-qubit gate
- C) Three-qubit gate
- D) Four-qubit gate

Answer: C) Three-qubit gate

49. Which of the following describes a 'logical qubit'?

- A) A single physical qubit used in quantum computations
- B) A qubit that is part of a quantum register
- C) A qubit used for error correction purposes
- D) A set of entangled qubits used to represent a single qubit

Answer: D) A set of entangled qubits used to represent a single

50. What is the term for the specific quantum states that form the basis of quantum computing operations?

- A) Quantum gates
- B) Quantum circuits
- C) Quantum algorithms
- D) Quantum basis states

Answer: D) Quantum basis states

51. Which of the following is a critical factor in the physical realization of qubits in a quantum computer?

- A) Electrical conductivity
- B) Magnetic resonance
- C) Quantum coherence time
- D) Classical processing speed

Answer: C) Quantum coherence time

52. Which branch of physics primarily deals with the principles underlying quantum computing?

- A) Classical mechanics
- B) Electrodynamics
- C) Quantum mechanics
- D) Thermodynamics

Answer: C) Quantum mechanics

53. What is the significance of Bell's theorem in the context of quantum computing?

- A) It proves the superiority of quantum computing
- B) It demonstrates the feasibility of quantum entanglement.
- C) It describes the basic structure of quantum algorithms.
- D) It relates to the speed of quantum computation.

Answer: B) It demonstrates the feasibility of quantum entanglement.

54.	Which	of 1	the	follov	ving	is	NOT	a	type	\mathbf{of}	quantum	gate?

A) I	Hadamard	gate
------	----------	------

- B) Pauli-Z gate
- C) XOR gate
- D) Toffoli gate

Answer: C) XOR gate

55. What is the term for the quantum mechanical principle that prevents identical fermions from occupying the same quantum state simultaneously?

- A) Heisenberg uncertainty principle
- B) Pauli exclusion principle
- C) Schrödinger equation
- D) Quantum entanglement

Answer: B) Pauli exclusion principle

56. Which concept in quantum computing allows for the creation of secure communication channels that are immune to eavesdropping?

- A) Quantum tunneling
- B) Quantum error correction
- C) Quantum cryptography
- D) Quantum superposition

Answer: C) Quantum cryptography

57. Which quantum algorithm is known for solving unstructured search problems efficiently?

- A) Shor's algorithm
- B) Grover's algorithm
- C) Deutsch's algorithm
- D) Simon's algorithm

Answer: B) Grover's algorithm

58. What is the term for a physical implementation of a qubit?

- A) Quantum bit
- B) Physical bit
- C) Qubium
- D) Qubit platform

Answer: D) Qubit platform

59. Which property of quantum systems allows them to perform multiple computations simultaneously?

- A) Entanglement
- B) Superposition
- C) Decoherence
- D) Quantum error correction

Answer: B) Superposition

60. What is the ultimate goal of developing quantum computers?

- A) To replace classical computers
- B) To solve specific problems faster than classical computers
- C) To enhance classical computing capabilities
- D) To create smaller and more efficient classical circuits

Answer: B) To solve specific problems faster than classical computers

61. What is the primary challenge in scaling up the number of qubits in a quantum computer?

- A) Increasing the size of the computer
- B) Maintaining quantum coherence
- C) Enhancing classical computing speed
- D) Reducing power consumption

Answer: B) Maintaining quantum coherence

62. Which of the following is a fundamental concept used to describe the probability distribution of a quantum system's state?

- A) Wave function
- B) Quantum tunneling
- C) Quantum entanglement
- D) Superposition

Answer: A) Wave function

63. What is a 'quantum circuit'?

- A) A physical circuit that processes quantum information
- B) A sequence of quantum gates applied to qubits
- C) A device for measuring quantum states
- D) A classical algorithm with quantum enhancements

Answer: B) A sequence of quantum gates applied to qubits

64. Which quantum phenomenon is primarily responsible for the potential speedup of quantum algorithms over classical algorithms?

- A) Decoherence
- B) Quantum entanglement
- C) Superposition
- D) Quantum tunneling

Answer: C) Superposition

65. In quantum computing, what is a 'qubit'?

- A) A classical bit used in quantum algorithms
- B) A basic unit of quantum information
- C) A gate that operates on quantum states
- D) A measurement device for quantum states

Answer: B) A basic unit of quantum information

66. What does the term 'quantum supremacy' refer to?

- A) Quantum computers outperforming classical computers in all tasks
- B) The ability of quantum computers to solve a problem
- C) The theoretical superiority of quantum mechanics
- D) The domination of quantum computers in the computing market

Answer: B) The ability of quantum computers to solve a problem

67. Which of the following is a key application area for quantum computing?

- A) Video game development
- B) Drug discovery and material science
- C) General office productivity software
- D) Traditional data storage

Answer: B) Drug discovery and material science

68. What does the term 'decoherence' refer to in quantum computing?

- A) The process of entangling qubits
- B) The loss of quantum coherence
- C) The superposition of quantum states
- D) The correction of quantum errors

Answer: B) The loss of quantum coherence

69. Which of the following describes the action of a 'phase flip' quantum gate?

- A) It flips the amplitude of the quantum state.
- B) It flips the phase of the quantum state.
- C) It swaps the states of two qubits.
- D) It creates a superposition state.

Answer: B) It flips the phase of the quantum state.

70. What is the significance of 'quantum annealing'?

- A) It is a method for correcting quantum errors.
- B) It is a technique used to solve optimization problems
- C) It is a process for maintaining qubit coherence.
- D) It is a gate that performs quantum operations.

Answer: B) It is a technique used to solve optimization

71. Which quantum algorithm is used for factoring large integers efficiently?

- A) Grover's algorithm
- B) Shor's algorithm
- C) Deutsch's algorithm
- D) Simon's algorithm

Answer: B) Shor's algorithm

72. What is 'quantum teleportation'?

- A) The transfer of classical information using quantum channels
- B) The transfer of quantum states from one location
- C) The movement of qubits through a quantum circuit
- D) The creation of entangled states between distant qubits

Answer: B) The transfer of quantum states from one location

73. Which type of error is particularly challenging to correct in quantum computers due to the no-cloning theorem?

- A) Bit-flip errors
- B) Phase-flip errors
- C) Quantum measurement errors
- D) Quantum state errors

Answer: D) Quantum state errors

74. What is the role of a 'quantum simulator'?

- A) To emulate classical computer operations on quantum hardware
- B) To model and study quantum systems that are difficult
- C) To perform quantum error correction
- D) To control the state of qubits during computation

Answer: B) To model and study quantum systems that are difficult

75. In quantum computing, what does the term 'entanglement' refer to?

- A) The superposition of multiple quantum states
- B) The phenomenon where qubits become interconnected
- C) The interference pattern created by quantum states
- D) The decoherence of quantum states

Answer: B) The phenomenon where qubits become interconnected

76. What is the primary advantage of quantum cryptography over classical cryptography?

- A) Faster encryption speeds
- B) Higher computational efficiency
- C) Unbreakable encryption based on quantum principles
- D) Simpler implementation and maintenance

Answer: C) Unbreakable encryption based on quantum principles

77. Which of the following is NOT a fundamental property of qubits?

- A) Superposition
- B) Entanglement
- C) Decoherence
- D) Classical determinism

Answer: D) Classical determinism

78. What is the term for a quantum system's state being influenced by measurements, causing it to collapse into one of the basis states?

- A) Superposition
- B) Decoherence
- C) Measurement problem
- D) Wave function collapse

Answer: D) Wave function collapse

79. Which of the following best describes a 'quantum algorithm'?

- A) A classical algorithm with quantum enhancements
- B) A set of quantum operations designed to solve a problem faster
- C) A hardware component for quantum computers
- D) A mathematical theorem in quantum mechanics

Answer: B) A set of quantum operations designed to solve a problem faster

80. What is the term used to describe the information about the quantum state of a system?

- A) Qubit notation
- B) Quantum entanglement
- C) Quantum information
- D) Quantum state representation

Answer: C) Quantum information

81. In quantum computing, what is 'quantum parallelism'?

- A) The ability to entangle multiple qubits
- B) The ability to perform multiple calculations simultaneously
- C) The interference of quantum states
- D) The decoherence of quantum states

Answer: B) The ability to perform multiple calculations simultaneously

82. Which of the following is an example of a quantum hardware platform?

- A) Classical CPU
- B) Quantum annealer
- C) Digital signal processor
- D) Field-programmable gate array (FPGA)

Answer: B) Quantum annealer

83. What is the main purpose of the 'Pauli-X' gate in quantum computing?

- A) To entangle qubits
- B) To create a superposition state
- C) To flip the state of a qubit
- D) To measure the state of a qubit

Answer: C) To flip the state of a qubit

84. Which phenomenon in quantum computing is characterized by the disappearance of quantum effects as a system interacts with its environment?

- A) Quantum entanglement
- B) Quantum tunneling
- C) Quantum decoherence
- D) Quantum superposition

Answer: C) Quantum decoherence

85. What is the function of the 'CNOT' gate in quantum computing?

- A) To create a superposition state
- B) To perform a conditional NOT operation on qubits
- C) To measure the state of a qubit
- D) To correct quantum errors

Answer: B) To perform a conditional NOT operation on qubits

86. What is the main principle behind Shor's algorithm?

- A) Searching an unsorted database efficiently
- B) Factoring large integers
- C) Simulating quantum systems
- D) Creating quantum entanglement

Answer: B) Factoring large integers

87. What is the role of 'Hadamard gate' in quantum computing?

- A) To flip the state of a qubit
- B) To create a superposition state
- C) To measure the state of a qubit
- D) To perform a conditional NOT operation

Answer: B) To create a superposition state

88. In the context of quantum computing, what is 'quantum speedup'?

- A) The enhancement of classical algorithms with quantum components
- B) The ability of quantum computers to solve certain
- C) The increased speed of qubit manipulation compared to classical bits
- D) The acceleration of quantum gate operations

Answer: B) The ability of quantum computers to solve certain

89. What is the significance of Grover's algorithm in quantum computing?

- A) It provides a method for secure communication
- B) It factors large integers efficiently
- C) It searches an unsorted database in $(O(\sqrt{N}))$ time
- D) It creates and measures quantum entanglement

Answer: C) It searches an unsorted database in $(O(\sqrt{N}))$ time

90. What is 'quantum error correction'?

- A) Techniques to fix classical computation errors using quantum algorithms
- B) Methods to correct errors in quantum states without
- C) Adjustments to quantum gates to improve their accuracy
- D) Processes to maintain qubit coherence

Answer: B) Methods to correct errors in quantum states without directly

91. Which concept is central to the security of quantum key distribution (QKD)?

- A) Quantum tunneling
- B) Quantum entanglement
- C) Superposition
- D) Decoherence

Answer: B) Quantum entanglement

92. What is 'quantum supremacy'?

- A) A quantum computer solving problems no classical computer
- B) The replacement of all classical computers with quantum computers
- C) The achievement of perfect quantum error correction
- D) The ability of quantum computers to simulate classical computers

Answer: A) A quantum computer solving problems no classical computer

93. What type of qubit is based on the use of superconducting circuits?

A) Topological qubits

B) Spin qubits
C) Photonic qubits
D) Transmon qubits
Answer: D) Transmon qubits
94. Which mathematical structure is commonly used to represent the state of a qubit?
A) Tensor
B) Matrix
C) Vector
D) Scalar
Answer: C) Vector
ation
95. What is the significance of the 'no-cloning theorem' in quantum computing?
A) It allows for perfect duplication of quantum states
B) It prevents the exact copying of an arbitrary unknown
C) It ensures that quantum entanglement can be achieved
D) It guarantees error-free quantum computation
Answer: B) It prevents the exact copying of an arbitrary unknown

A) Converts a classical signal into a quantum signal

96. What does a 'quantum Fourier transform' (QFT) do?

- B) Transforms quantum states into their frequency components
- C) Performs a discrete Fourier transform on quantum data
- D) Creates entangled quantum states

Answer: C) Performs a discrete Fourier transform on quantum data

97. What is the main goal of the 'quantum adiabatic algorithm'?

- A) To solve optimization problems by evolving the system slowly
- B) To simulate classical computing tasks using quantum computers
- C) To achieve quantum error correction
- D) To factor large integers efficiently

Answer: A) To solve optimization problems by evolving the system slowly

98. In quantum computing, what is a 'quantum gate'?

- A) A physical device used to trap qubits
- B) An operation that changes the state of a qubit or qubits
- C) A classical algorithm enhanced by quantum principles
- D) A method for measuring quantum states

Answer: B) An operation that changes the state of a qubit or qubits

99. What role do 'ancilla qubits' play in quantum computing?

- A) They store classical information in a quantum system
- B) They act as backup qubits in case of errors

- C) They assist in quantum error correction and complex operations
- D) They create quantum entanglement

Answer: C) They assist in quantum error correction and complex operations

100. What is the primary advantage of using quantum computing for cryptographic purposes?

- A) It allows for faster encryption and decryption
- B) It offers unbreakable encryption based on the principles
- C) It simplifies the implementation of cryptographic protocols
- D) It increases the computational efficiency of cryptographic algorithms

Answer: B) It offers unbreakable encryption based on the principles

101. What physical system is commonly used to implement qubits in quantum computing?

- A) Electrons
- B) Protons
- C) Photons
- D) Neutrons

Answer: A) Electrons

102. Which property of qubits allows them to represent both 0 and 1 simultaneously?

A) Superposition

B) Entanglement
C) Interference
D) Decoherence
Answer: A) Superposition
103. How many classical bits of information can a single qubit represent when in a superposition state?
A) 0
B) 1
C) 2
D) Infinite
Answer: C) 2
C Cation !
104. What physical characteristic of qubits is crucial for their ability to perform quantum computations?
A) Charge
B) Spin
C) Mass
D) Volume
Answer: B) Spin
105. In which quantum system are qubits typically implemented using the polarization of light?

A) Ion Traps
B) Superconducting Circuits
C) Photonic Systems
D) Nuclear Magnetic Resonance (NMR)
Answer: C) Photonic Systems
106. Which of the following is NOT a common physical implementation of qubits?
A) Electron Spin
B) Photon Polarization
C) Nuclear Spin
D) Gravitational Waves
Answer: D) Gravitational Waves
107. What is the term for the smallest unit of quantum information, analogous to a classical bit? A) Qubit B) Quantum State C) Quantum Gate D) Quantum Circuit Answer: A) Qubit

108. How are qubits manipulated in quantum computing?

- A) By applying classical logic gates
- B) By using magnetic fields
- C) By applying quantum gates
- D) By measuring their states

Answer: C) By applying quantum gates

109. Which physical phenomenon allows for the entanglement of qubits?

- A) Superposition
- B) Quantum Tunneling
- C) Quantum Interference
- D) Quantum Coherence

Answer: A) Superposition

110. What is the primary advantage of using photons as qubits?

- A) Long coherence times
- B) Easy to control and manipulate
- C) High error rates
- D) Susceptibility to decoherence

Answer: B) Easy to control and manipulate

111. In quantum computing, what is the significance of the coherence time of qubits?

A) It dete	rmines	the	speed	ot	computation
------------	--------	-----	-------	----	-------------

- B) It measures the stability of the qubit's state
- C) It affects the number of qubits that can be entangled
- D) It determines the size of quantum circuits

Answer: B) It measures the stability of the qubit's state

112. What is the term for the process of preparing qubits in a specific initial state?

- A) Initialization
- B) Superposition
- C) Measurement
- D) Decoherence

Answer: A) Initialization

113. Which physical property of electrons is used to implement qubits in quantum dots?

- A) Charge
- B) Spin
- C) Mass
- D) Velocity

Answer: B) Spin

114. Which physical system is used in ion trap quantum computers to implement qubits?

11) I HOLOHS	A)	Photons
--------------	----	----------------

- B) Electrons
- C) Ions
- D) Superconducting Circuits

Answer: C) Ions

115. What is the primary challenge in maintaining qubit coherence in quantum computing?

- A) Superposition
- B) Entanglement
- C) Decoherence
- D) Interference

Answer: C) Decoherence

116. Which of the following is a method to address qubit decoherence in quantum computing?

- A) Increasing the temperature
- B) Decreasing the size of qubits
- C) Using error correction codes
- D) Entangling qubits

Answer: C) Using error correction codes

117.	What	physical	system	is	used	to	implement	qubits	in
superconducting quantum computers?									

- A) Electrons
- B) Photons
- C) Cooper Pairs
- D) Ions

Answer: C) Cooper Pairs

118. What is the term for the process of initializing qubits to a known state in quantum computing?

- A) Superposition
- B) Measurement
- C) Initialization
- D) Decoherence

Answer: C) Initialization

119. Which of the following is a method to address qubit decoherence in quantum computing?

- A) Increasing the temperature
- B) Decreasing the size of qubits
- C) Using error correction codes

D) Entangling qubits

Answer: C) Using error correction codes

120. What is the primary advantage of using trapped ions as qubits?

- A) Long coherence times
- B) High-speed operations
- C) Low error rates
- D) Scalability

Answer: A) Long coherence time

121. Which physical system is used in NMR quantum computers to implement qubits?

- A) Electrons
- B) Photons
- C) Nuclei
- D) Superconducting Circuits

Answer: C) Nuclei

122. Which physical phenomenon allows for the entanglement of qubits?

- A) Superposition
- B) Quantum Tunneling
- C) Quantum Interference
- D) Quantum Coherence

Answer: A) Superposition

123. What is the term for the smallest unit of quantum information, analogous to a classical bit?

- A) Qubit
- B) Quantum State
- C) Quantum Gate
- D) Quantum Circuit

Answer: A) Qubit

124. How are qubits manipulated in quantum computing?

- A) By applying classical logic gates
- B) By using magnetic fields
- C) By applying quantum gates
- D) By measuring their states

Answer: C) By applying quantum gates

125. What is the primary advantage of using photons as qubits?

- A) Long coherence times
- B) Easy to control and manipulate
- C) High error rates
- D) Susceptibility to decoherence

Answer: B) Easy to control and manipulate