

Multiple Choice Q&A

1.	What is the primary purpose of algorithm analysis?
	a) To design algorithms
	b) To analyze the performance of algorithms
	c) To implement algorithms
	d) To debug algorithms
	Answer: b)
	Explanation: Algorithm analysis is primarily about assessing the performance of algorithms.
2.	Which notation is used to describe the upper bound of an algorithm's running time?
	a) Big oh notation
	b) Omega notation
	c) Theta notation
	d) Little oh notation
	Answer: a)
	Explanation: Big oh notation describes the upper bound of an algorithm's time complexity.
3.	Which notation represents the tight bound of an algorithm's running time?
	a) Big oh notation

		11.
	b) Omega notation	
	c) Theta notation	
	d) Little oh notation	
	Answer: c)	
	Explanation: Theta notation represents the tight bound or exact r of an algorithm.	unning time
4.	What does "O(n)" denote in algorithmic notation?	
	a) Worst-case time complexity	
	b) Best-case time complexity	
	c) Average-case time complexity	
	d) None of the above	
	Answer: a)	
	Explanation: "O(n)" denotes the worst-case time complexity.	
5.	Which sorting algorithm uses the divide-and-conquer approach?	
	a) Bubble sort	
	b) Quick sort	
	c) Selection sort	
	d) Insertion sort	
	Answer: b)	
	Explanation: Quick sort is a sorting algorithm that uses divide-and	-conquer.

6. What is the time complexity of the merge sort algorithm?

	a) O(n)
	b) O(log n)
	c) O(n^2)
	d) O(n log n)
	Answer: d)
	Explanation: Merge sort has a time complexity of $O(n \log n)$ in the worst and average cases.
7.	Which algorithm is known for its efficient multiplication of large matrices?
	a) Binary search
	b) Quick sort
	c) Merge sort
	d) Strassen's matrix multiplication
	Answer: d)
	Explanation: Strassen's matrix multiplication is known for efficient matrix multiplication.
8.	What is the primary goal of the divide-and-conquer approach?
	a) To find the average case
	b) To divide the problem into subproblems
	c) To conquer the subproblems
	d) To merge the subproblems
	Answer: b)

Explanation: Divide-and-conquer involves breaking a problem into smaller subproblems.

	subproblems.
9.	Which notation represents the lower bound of an algorithm's running time?
	a) Big oh notation
	b) Omega notation
	c) Theta notation
	d) Little oh notation
	Answer: b)
	Explanation: Omega notation represents the lower bound of an algorithm's time complexity.
10.	What does "Θ(n)" denote in algorithmic notation?
	a) Best-case time complexity
	b) Worst-case time complexity
	c) Average-case time complexity
	d) Tight bound
	Answer: d)
	Explanation: $"\Theta(n)"$ denotes a tight bound, representing both upper and lower bounds.
11.	Which algorithmic notation provides an upper bound but not necessarily the tight bound?
	a) Big oh notation
	b) Omega notation

c) Theta notation

	d) Little oh notation
	Answer: a)
	Explanation: Big oh notation provides an upper bound but not necessarily the tight bound.
12.	In algorithm analysis, what does "Little oh notation" represent?
	a) Best-case time complexity
	b) Worst-case time complexity
	c) Upper bound
	d) Strict upper bound
	Answer: d)
	Explanation: Little oh notation represents a strict upper bound, indicating a faster-growing function.
13.	Which of the following is an example of a divide-and-conquer algorithm for searching?
	a) Binary search
	b) Linear search
	c) Bubble sort
	d) Quick sort
	Answer: a)
	Explanation: Binary search is a classic example of a divide-and-conquer algorithm for searching.

14. Which notation is used to describe the lower bound of an algorithm's running time?

	a) Big oh notation
	b) Omega notation
	c) Theta notation
	d) Little oh notation
	Answer: b)
	Explanation: Omega notation describes the lower bound of an algorithm's time complexity.
15.	What is the primary purpose of asymptotic notations in algorithm analysis?
	a) To provide precise runtime measurements
	b) To analyze real-world algorithm performance
	c) To simplify and characterize algorithm behavior
	d) To compare algorithms without analysis
	Answer: c)
	Explanation: Asymptotic notations simplify and characterize algorithm behavior, enabling comparisons.
16.	Which notation indicates that an algorithm's time complexity grows linearly with input size?
	a) O(n)
	b) O(log n)
	c) O(n^2)
	d) O(1)
	Answer: a)

Explanation: "O(n)" indicates linear growth in time complexity.

17.	Which notation represents an upper bound that may not be tight but still
	provides useful information about an algorithm's performance?
	a) Big oh notation

- b) Omega notation
- c) Theta notation
- d) Little oh notation

Answer: a)

Explanation: Big oh notation provides an upper bound that may not be tight but is useful for analysis.

- 18. What is the primary goal of Strassen's matrix multiplication algorithm?
 - a) To achieve O(n^2) complexity
 - b) To divide matrices into smaller submatrices
 - c) To multiply matrices with a recursive approach
 - d) To conquer and merge submatrices efficiently

Answer: d)

Explanation: Strassen's matrix multiplication aims to efficiently conquer and merge submatrices.

- 19. Which notation represents an algorithm's tight bound with respect to time complexity?
 - a) Big oh notation
 - b) Omega notation
 - c) Theta notation

d) Little oh notation

Answer: c)

Explanation: Theta notation represents an algorithm's tight bound.

- 20. What is the primary purpose of the "Theta" notation?
 - a) To represent the lower bound of an algorithm's time complexity
 - b) To represent the upper bound of an algorithm's time complexity
 - c) To represent the tight bound of an algorithm's time complexity
 - d) To represent the average-case time complexity

Answer: c)

Explanation: Theta notation represents the tight bound of an algorithm's time complexity.

- 21. In algorithm analysis, what does "Big oh notation" represent?
 - a) Best-case time complexity
 - b) Worst-case time complexity
 - c) Tight bound
 - d) Upper bound

Answer: d)

Explanation: Big oh notation represents an upper bound on time complexity.

- 22. Which of the following sorting algorithms has the best average-case time complexity?
 - a) Bubble sort
 - b) Quick sort

c) Selection sort d) Merge sort Answer: b) Explanation: Quick sort typically has the best average-case time complexity. 23. What is the primary purpose of "Little oh notation" in algorithm analysis? a) To provide an upper bound b) To provide a lower bound c) To represent a strict upper bound d) To represent a strict lower bound Answer: c) Explanation: Little oh notation represents a strict upper bound, indicating faster growth. 24. In algorithm analysis, what is the primary focus of "Omega notation"? a) Best-case time complexity b) Worst-case time complexity c) Tight bound d) Average-case time complexity Answer: a)

Explanation: Omega notation focuses on the lower bound, often representing

25. What is the primary goal of "Binary search"?

best-case time complexity.

a) To find the largest element in an array

	The state of the s
	b) To search for a specific element in a sorted array
	c) To sort an array using divide-and-conquer
	d) To merge two sorted arrays
	Answer: b)
	Explanation: Binary search is designed to search for a specific element in a sorted array efficiently.
26.	Which notation provides an algorithm's exact running time in algorithmic analysis?
	a) Big oh notation
	b) Omega notation
	c) Theta notation
	d) Little oh notation
	Answer: c)
	Explanation: Theta notation provides an algorithm's exact running time.
27.	What is the primary advantage of "Quick sort" over other sorting algorithms?
	a) It has the best worst-case time complexity
	b) It requires minimal additional memory
	c) It is the easiest to implement
	d) It is stable
	Answer: b)
	Explanation: Quick sort has an advantage in terms of memory usage as it

requires minimal additional memory.

28.	What does "O(1)" denote in algorithmic notation?
	a) Constant time complexity
	b) Linear time complexity
	c) Quadratic time complexity
	d) Logarithmic time complexity
	Answer: a)
	Explanation: $"O(1)"$ denotes constant time complexity, meaning it does not depend on the input size.
29.	Which notation is used to represent the upper bound on an algorithm's time complexity?
	a) Big oh notation
	b) Omega notation
	c) Theta notation
	d) Little oh notation
	Answer: a)
	Explanation: Big oh notation represents the upper bound on time complexity.
30.	Which sorting algorithm exhibits the best-case time complexity of O(n log n)?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: b)

Explanation: Quick sort exhibits best-case time complexity of O(n log n).

- 31. What is the primary goal of "Merge sort"?
 - a) To sort an array using a linear-time algorithm
 - b) To minimize memory usage during sorting
 - c) To merge two unsorted arrays efficiently
 - d) To sort an array using a divide-and-conquer approach

Answer: d)

Explanation: Merge sort aims to sort an array using a divide-and-conquer approach.

- 32. Which notation represents an algorithm's running time that grows slower than a specified function?
 - a) Big oh notation
 - b) Omega notation
 - c) Theta notation
 - d) Little oh notation

Answer: d)

Explanation: Little oh notation represents an algorithm's running time that grows slower than a specified function.

- 33. What is the primary focus of "Theta notation" in algorithm analysis?
 - a) To represent the lower bound
 - b) To represent the upper bound
 - c) To represent the tight bound

	d) To represent the average-case time complexity
	Answer: c)
	Explanation: Theta notation represents the tight bound of an algorithm's time complexity.
34.	Which algorithm is known for its worst-case time complexity of $O(n^2)$ but is still widely used for small datasets?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: a)
	Explanation: Bubble sort has a worst-case time complexity of $O(n^2)$ but is efficient for small datasets.
35.	Which sorting algorithm is considered an "in-place" sorting algorithm?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: b)
	Explanation: Quick sort is considered an "in-place" sorting algorithm.
36.	What is the primary purpose of "Theta notation" in algorithm analysis?
	a) To provide an upper bound

	·
	b) To provide a lower bound
	c) To represent a tight bound
	d) To represent the worst-case time complexity
	Answer: c)
	Explanation: Theta notation provides a tight bound for an algorithm's time complexity.
37.	Which of the following sorting algorithms exhibits $O(n^2)$ worst-case time complexity?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: a)
	Explanation: Bubble sort has a worst-case time complexity of $O(n^2)$.
38.	In algorithm analysis, what does "Omega notation" represent?
	a) Best-case time complexity
	b) Worst-case time complexity
	c) Tight bound
	d) Average-case time complexity
	Answer: b)
	Explanation: Omega notation focuses on the lower bound, often representing worst-case time complexity.

39.	What is the primary purpose of "Big oh notation" in algorithm analysis?
	a) To provide an upper bound
	b) To provide a lower bound
	c) To represent a tight bound
	d) To represent the average-case time complexity
	Answer: a)
	Explanation: Big oh notation provides an upper bound for an algorithm's time complexity.
40.	Which sorting algorithm is known for its simplicity but is generally inefficient for large datasets?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: a)
	Explanation: Bubble sort is simple but inefficient for large datasets.
41.	Which algorithm is commonly used for efficient searching in sorted arrays?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Binary search
	Answer: d)

Explanation: Binary search is commonly used for efficient searching in sorted arrays.

42.	What is the primary purpose of "Little oh notation" in algorithm analysis?
	a) To provide an upper bound
	b) To provide a lower bound
	c) To represent a strict upper bound
	d) To represent a strict lower bound
	Answer: c)
	Explanation: Little oh notation represents a strict upper bound, indicating faster growth.
43.	Which sorting algorithm exhibits the worst-case time complexity of $O(n^2)$?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: a)
	Explanation: Bubble sort exhibits worst-case time complexity of O(n^2).
44.	What is the primary advantage of "Merge sort" over "Quick sort" in terms of worst-case time complexity?
	a) Merge sort is faster
	b) Merge sort has O(n) complexity
	c) Merge sort is more memory-efficient

	d) Merge sort is more stable
	Answer: c)
	Explanation: Merge sort has a guaranteed worst-case time complexity of O(n log n) compared to Quick sort.
45.	Which sorting algorithm uses a pivot element to partition the input array?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: b)
	Explanation: Quick sort uses a pivot element for partitioning.
46.	What is the primary goal of "Strassen's matrix multiplication" algorithm?
	a) To minimize the number of multiplications
	b) To minimize the number of additions
	c) To minimize the number of subtractions
	d) To minimize the number of divisions
	Answer: a)
	Explanation: Strassen's matrix multiplication aims to minimize the number of multiplications.
47	Which algorithmic notation represents an upper bound that may or may not be

47. Which algorithmic notation represents an upper bound that may or may not be tight?

a) Big oh notation

	b) Omega notation
	c) Theta notation
	d) Little oh notation
	Answer: a)
	Explanation: Big oh notation represents an upper bound that may or may not be tight.
48.	Which sorting algorithm exhibits the worst-case time complexity of $O(n \log n)$?
	a) Bubble sort
	b) Quick sort
	c) Selection sort
	d) Merge sort
	Answer: d)
	Explanation: Merge sort exhibits worst-case time complexity of O(n log n).
49.	What is the primary purpose of "Quick sort" in algorithm analysis?
	a) To minimize memory usage
	b) To guarantee worst-case time complexity
	c) To provide a lower bound
	d) To minimize comparisons
	Answer: a)
	Explanation: Quick sort is known for minimizing memory usage.
50.	What does "O(log n)" denote in algorithmic notation?

	a) Constant time complexity
	b) Linear time complexity
	c) Quadratic time complexity
	d) Logarithmic time complexity
	Answer: d)
	Explanation: "O(log n)" denotes logarithmic time complexity.
M	ultiple Choice Q&A
51.	What data structure is commonly used to implement disjoint sets?
	a) Array
	b) Stack
	c) Queue
	d) Tree
	Answer: A)
	Explanation: Arrays are often used to implement disjoint sets.
52.	Which of the following operations is NOT typically associated with disjoint set data structures?
	a) Push
	b) Union
	c) Find
	d) Merge

	Answer: A)
	Explanation: "Push" is not a common operation in disjoint sets.
53.	In the context of disjoint set operations, what does the "Find" operation do?
	a) Finds the smallest element in the set
	b) Finds the representative element of the set
	c) Finds the largest element in the set
	d) Finds the middle element in the set
	Answer: B)
	Explanation: The "Find" operation finds the representative element.
54.	What is the time complexity of the "Union" operation in a disjoint set using the "union by rank" technique?
	a) O(1)
	b) O(n)
	c) O(log n)
	d) O(n log n)
	Answer: C)
	Explanation: The "union by rank" technique ensures O(log n) time.
55.	Which of the following problems can be solved using backtracking?
	a) Sorting
	b) Searching

c) Graph traversal

13	~		
a)	Sudoku	SO	vina
\sim $^{\prime}$	Saacika	50	V 11 19

Answer: D)

Explanation: Backtracking is used for solving problems like Sudoku.

- 56. What is a common application of backtracking algorithms?
 - a) Finding prime numbers
 - b) Solving Sudoku puzzles
 - c) Sorting an array
 - d) Calculating Fibonacci numbers

Answer: B)

Explanation: Backtracking is often used to solve Sudoku puzzles.

- 57. Which problem involves placing N queens on an N×N chessboard such that no two queens threaten each other?
 - a) N-Knights problem
 - b) N-Queens problem
 - c) N-Rooks problem
 - d) N-Bishops problem

Answer: B)

Explanation: The N-Queens problem involves placing queens safely.

- 58. What is a key characteristic of backtracking algorithms?
 - a) They always find the optimal solution.
 - b) They explore all possible solutions.

- c) They rely on random choices.
- d) They are not recursive.

Answer: B)

Explanation: Backtracking explores all possible solutions.

- 59. In backtracking, when is a solution considered valid and accepted?
 - a) When it meets a predefined criteria.
 - b) When it reaches the end of the problem.
 - c) When it contains the maximum number of choices.
 - d) When it has the shortest path.

Answer: A)

Explanation: A valid solution meets predefined criteria.

- 60. Which problem involves finding a subset of elements whose sum is equal to a given target sum?
 - a) Knapsack problem
 - b) Subset sum problem
 - c) Permutation problem
 - d) Combination problem

Answer: B)

Explanation: The Subset Sum problem involves finding such subsets.

- 61. What is the primary goal of graph coloring in graph theory?
 - a) To make graphs more colorful.

b) To assign colors to vertices such that no two adjacent vertices have the same color.
c) To create aesthetically pleasing graphs.
d) To add more vertices to a graph.
Answer: B)
Explanation: Graph coloring ensures adjacent vertices differ in color.
In graph coloring, what is the minimum number of colors required to color a tree with N vertices?
a) N
b) N-1
c) N+1
d) 1
Answer: A)
Explanation: You can color a tree with N vertices using N colors.
Which algorithm is commonly used for graph coloring problems?
a) Depth-First Search (DFS)
b) Breadth-First Search (BFS)
c) Dijkstra's algorithm
d) Prim's algorithm
Answer: A)
Explanation: DFS is often used to implement graph coloring algorithms.
What is the chromatic number of a bipartite graph?

62.

63.

64.

	a) 1
	b) 2
	c) 3
	d) It varies
	Answer: B)
	Explanation: Bipartite graphs have a chromatic number of 2.
65.	Which of the following is NOT a technique to solve the N-Queens problem using backtracking?
	a) Backtracking with recursion
	b) Iterative backtracking
	c) Bitmasking
	d) Hill climbing
	Answer: D)
	Explanation: Hill climbing is not a common technique for N-Queens.
66.	What is the worst-case time complexity for solving the N-Queens problem using backtracking?
	a) O(N)
	b) O(N^2)
	c) O(N^3)
	d) O(2^N)
	Answer: D)
	Explanation: The N-Queens problem has exponential complexity.

67.	Which data structure is commonly used to implement the "Union-Find" data structure?
	a) Linked List
	b) Stack
	c) Array
	d) Tree
	Answer: C)
	Explanation: Arrays are often used for "Union-Find" operations.
68.	In backtracking, what is pruning?
	a) A technique to optimize the search process by eliminating unpromising candidates.
	b) A way to add more choices to the solution.
	c) A method to backtrack more aggressively.
	d) A strategy to avoid recursion.
	Answer: A)
	Explanation: Pruning helps reduce unnecessary exploration.
69.	Which of the following is an example of a backtracking-based algorithm?
	a) Quicksort
	b) Depth-First Search (DFS)
	c) Binary Search
	d) Merge Sort
	Answer: B)

Explanation: DFS is a backtracking-based algorithm.

- 70. What is the primary purpose of backtracking in algorithms?
 - a) To optimize code execution.
 - b) To explore all possible solutions to a problem.
 - c) To minimize memory usage.
 - d) To avoid recursion.

Answer: B)

Explanation: Backtracking explores all possible solutions.

- 71. Which problem involves finding a valid sequence of moves for a knight on a chessboard to visit every square exactly once?
 - a) Knight's Tour problem
 - b) Bishop's Walk problem
 - c) Rook's Path problem
 - d) King's Journey problem

Answer: A)

Explanation: The Knight's Tour problem involves such a sequence.

- 72. In backtracking, what is the "state space tree"?
 - a) A tree representing all possible states of a problem.
 - b) A tree structure used to store the backtracking code.
 - c) A tree with states arranged in a balanced manner.
 - d) A tree for organizing recursive calls.

Answer: A)

Explanation: The state space tree explores all possible states.

- 73. Which backtracking problem involves finding a valid configuration of non-attacking queens on a chessboard?
 - a) N-Knights problem
 - b) N-Rooks problem
 - c) N-Bishops problem
 - d) N-Queens problem

Answer: D)

Explanation: The N-Queens problem deals with non-attacking queens.

- 74. What is the primary advantage of using backtracking to solve problems?
 - a) It guarantees the fastest solution.
 - b) It is efficient for all types of problems.
 - c) It is especially useful for problems with a large solution space.
 - d) It always finds the global optimum.

Answer: C)

Explanation: Backtracking is efficient for large solution spaces.

- 75. Which algorithm is often used for solving the "Subset Sum" problem using backtracking?
 - a) Dynamic Programming
 - b) Greedy Algorithm
 - c) Depth-First Search (DFS)

d) Breadth-First Search (BFS)

Answer: C)

Explanation: DFS is commonly used for backtracking in Subset Sum.

- 76. What is the primary goal of the "Subset Sum" problem?
 - a) To find the largest subset of elements.
 - b) To find a subset with the fewest elements.
 - c) To find a subset whose sum matches a given target sum.
 - d) To find all possible subsets.

Answer: C)

Explanation: Subset Sum aims to find a subset with a specific sum.

- 77. In graph coloring, what is a "conflict" between two vertices?
 - a) When two vertices have the same color.
 - b) When two vertices are not connected by an edge.
 - c) When two vertices have different degrees.
 - d) When two vertices are in the same connected component.

Answer: A)

Explanation: A conflict occurs when two adjacent vertices have the same color.

- 78. Which backtracking problem involves finding a valid sequence of moves for a knight on a chessboard to visit every square exactly once, ending at the starting position?
 - a) Knight's Tour problem
 - b) Bishop's Path problem

	c) Rook's Journey problem
	d) King's Quest problem
	Answer: A)
	Explanation: The Knight's Tour problem includes ending at the start.
79.	What is the time complexity of finding all possible permutations of a sequence of N elements using backtracking?
	a) O(N)
	b) O(N log N)
	c) O(N!)
	d) O(2^N)
	Answer: C)
	Explanation: Finding all permutations has a factorial time complexity.
80.	In graph coloring, what is a "chromatic coloring"?
	a) A coloring with only two colors.
	b) A coloring that uses the maximum number of colors.
	c) A coloring that uses the minimum number of colors.
	d) A coloring that uses prime numbers.
	Answer: C)
	Explanation: Chromatic coloring aims to use the fewest colors.
81.	What is the primary disadvantage of backtracking algorithms?

a) They are not guaranteed to find a solution.

- b) They are always slow.
- c) They require excessive memory.
- d) They are difficult to implement.

Answer: A)

Explanation: Backtracking may not find a solution in some cases.

- 82. Which of the following problems can be solved using backtracking?
 - a) Finding the square root of a number
 - b) Solving linear equations
 - c) Solving the traveling salesman problem
 - d) Calculating the Fibonacci sequence

Answer: C)

Explanation: The traveling salesman problem is solved using backtracking.

- 83. What does the "backtrack" step in backtracking algorithms involve?
 - a) Undoing the previous choice and trying another option.
 - b) Terminating the algorithm abruptly.
 - c) Increasing the recursion depth.
 - d) Printing the intermediate results.

Answer: A)

Explanation: Backtracking involves undoing choices and trying others.

- 84. In graph coloring, what is a "proper coloring"?
 - a) A coloring using only primary colors.

- b) A coloring using complementary colors.
- c) A coloring where no adjacent vertices have the same color.
- d) A coloring that uses all available colors.

Answer: C)

Explanation: A proper coloring ensures adjacent vertices differ in color.

- 85. Which algorithm is often used for solving the "Subset Sum" problem with dynamic programming, rather than backtracking?
 - a) Depth-First Search (DFS)
 - b) Breadth-First Search (BFS)
 - c) Knapsack Algorithm
 - d) Greedy Algorithm

Answer: C)

Explanation: The Knapsack Algorithm is frequently used for Subset Sum.

- 86. What is the primary difference between backtracking and dynamic programming?
 - a) Dynamic programming guarantees finding an optimal solution.
 - b) Backtracking explores all possible solutions.
 - c) Dynamic programming always uses recursion.
 - d) Backtracking is only used for linear problems.

Answer: B)

Explanation: Backtracking explores all possible solutions exhaustively.

	The state of the s
87.	Which problem involves finding a valid sequence of moves for a rook on a chessboard to visit every square exactly once?
	a) Knight's Tour problem
	b) Rook's Path problem
	c) Bishop's Walk problem
	d) Queen's Quest problem
	Answer: B)
	Explanation: The Rook's Path problem involves visiting all squares.
88.	What is the primary purpose of the "coloring" in graph coloring algorithms?
	a) To make the graph more visually appealing.
	b) To assign labels to vertices.
	c) To reduce the graph's size.
	d) To distinguish adjacent vertices.
	Answer: D)
	Explanation: Coloring helps distinguish adjacent vertices in graphs.
89.	Which problem involves finding a valid sequence of moves for a king on a chessboard to visit every square exactly once?
	a) Knight's Tour problem
	b) King's Journey problem
	c) Rook's Path problem
	d) Queen's Quest problem

Answer: B)

Explanation: The King's Journey problem involves such a sequence.

- 90. In the context of backtracking, what is "feasible" solution?
 - a) A solution that is easily achievable.
 - b) A solution that meets all constraints and requirements.
 - c) A solution that is optimal.
 - d) A solution that uses the fewest resources.

Answer: B)

Explanation: A feasible solution meets all constraints and requirements.

- 91. Which backtracking problem involves placing N non-attacking bishops on an N×N chessboard?
 - a) N-Rooks problem
 - b) N-Queens problem
 - c) N-Knights problem
 - d) N-Bishops problem

Answer: D)

Explanation: The N-Bishops problem deals with non-attacking bishops.

- 92. What is the primary disadvantage of using backtracking for large problem instances?
 - a) It may lead to stack overflow errors.
 - b) It requires a lot of memory.
 - c) It is not suitable for large instances.
 - d) It can be too slow.

Answer: C)

Explanation: Backtracking can become impractical for large problems.

- 93. What is the primary advantage of the "Subset Sum" problem solved using dynamic programming over backtracking?
 - a) It has a faster runtime.
 - b) It guarantees finding an optimal solution.
 - c) It requires less memory.
 - d) It is more versatile.

Answer: B)

Explanation: Dynamic programming guarantees finding the optimal solution.

- 94. In graph coloring, what is a "planar graph"?
 - a) A graph with a planar layout.
 - b) A graph that can be embedded in a plane without edge crossings.
 - c) A graph with only one vertex.
 - d) A graph with a straight-line representation.

Answer: B)

Explanation: Planar graphs can be embedded in a plane without crossings.

- 95. Which of the following is NOT a common application of backtracking algorithms?
 - a) Solving mazes
 - b) Cryptography
 - c) Combinatorial optimization

	•
	d) Constraint satisfaction problems
	Answer: B)
	Explanation: Cryptography is not typically solved with backtracking.
96.	In backtracking, what is "backjumping"?
	a) A technique to move back to the start of the problem.
	b) A technique to quickly backtrack to a previous decision point.
	c) A method to skip over choices.
	d) A way to avoid recursion.
	Answer: B)
	Explanation: Backjumping efficiently returns to a previous decision point.
97.	Which problem involves finding a valid sequence of moves for a bishop on a chessboard to visit every square exactly once?
	a) Knight's Tour problem
	b) Bishop's Walk problem
	c) Rook's Path problem
	d) Queen's Quest problem
	Answer: B)
	Explanation: The Bishop's Walk problem involves visiting all squares.
98.	What is the time complexity of backtracking algorithms in the worst case?
	a) O(1)
	b) O(N)

	c) O(N log N)
	d) O(2^N)
	Answer: D)
	Explanation: Backtracking can have exponential worst-case complexity.
99.	In graph coloring, what is a "vertex coloring"?
	a) A coloring of the graph's edges.
	b) A coloring of the graph's vertices.
	c) A coloring of the graph's paths.
	d) A coloring of the graph's cycles.
	Answer: B)
	Explanation: Vertex coloring assigns colors to the graph's vertices.
100.	Which of the following is NOT a common problem-solving technique involving backtracking?
	a) Maze solving
	b) Sudoku solving
	c) Cryptanalysis
	d) Sorting
	Answer: D)
	Explanation: Sorting is not a common problem for backtracking
101.	What is Dynamic Programming?
	a) A) A programming language

	Digital Trone	sform
	b) B) A design pattern	
	c) C) A method of solving problems	
	d) D) A data structure	
	Answer: C	
	Explanation: Dynamic Programming is a method of solving problems efficiently by breaking them down into smaller subproblems and storing their solutions.	-
102.	Which of the following is NOT a characteristic of Dynamic Programming?	
	a) Memoization	
	b) Overlapping subproblems	
	c) Greedy approach	
	d) Optimal substructure	
	Answer: C	
	Explanation: Greedy approach is not a characteristic of Dynamic Programming it is a different problem-solving strategy.] ;
103.	What is the primary advantage of using Dynamic Programming for problem solving?	۱-
	a) Simplicity	
	b) Speed	
	c) Correctness	
	d) Scalability	
	Answer: B	

Explanation: Dynamic Programming can solve complex problems efficiently, making it faster than naive approaches.

- 104. In the context of Dynamic Programming, what does "Optimal Substructure" refer to?
 - a) Subproblems are independent
 - b) Subproblems share solutions
 - c) Subproblems have no solutions
 - d) Subproblems have the same solution

Answer: B

Explanation: Optimal Substructure means that the solution to the original problem can be constructed from the solutions of its subproblems.

- 105. Which of the following is NOT a common application of Dynamic Programming?
 - a) Sorting algorithms
 - b) Optimal Binary Search Trees
 - c) 0/1 Knapsack Problem
 - d) Traveling Salesman Problem

Answer: A

Explanation: Sorting algorithms typically do not use Dynamic Programming; they use various sorting techniques

- 106. What is the primary goal of the Optimal Binary Search Trees problem?
 - a) Minimize the height
 - b) Maximize the height
 - c) Minimize the number of nodes

d) Maximize the number of nodes

Answer: A

Explanation: The goal of Optimal Binary Search Trees is to minimize the height, making search operations efficient.

- 107. In the 0/1 Knapsack Problem, what is the constraint related to item selection?
 - a) Total weight should be maximum
 - b) Total value should be maximum
 - c) Both weight and value should be maximum
 - d) Total weight should not exceed a limit

Answer: D

Explanation: In the 0/1 Knapsack Problem, the constraint is that the total weight of selected items should not exceed a given limit.

- 108. What is a key characteristic of the All Pairs Shortest Path problem?
 - a) A) It involves finding the shortest path between two nodes
 - b) B) It involves finding the shortest path in a weighted graph
 - c) C) It involves finding the shortest path between all pairs of nodes
 - d) D) It involves finding the longest path between two nodes

Answer: C

Explanation: The All Pairs Shortest Path problem aims to find the shortest path between all pairs of nodes in a weighted graph.

- 109. Which algorithm is commonly used to solve the All Pairs Shortest Path problem?
 - a) Dijkstra's algorithm

- b) Bellman-Ford algorithm
- c) Floyd-Warshall algorithm
- d) Prim's algorithm

Answer: C

Explanation: The Floyd-Warshall algorithm is commonly used to solve the All Pairs Shortest Path problem.

- 110. In the Traveling Salesperson Problem, what is the objective?
 - a) Maximize profit
 - b) Minimize distance traveled
 - c) Find the shortest path
 - d) Visit all cities once

Answer: B

Explanation: The objective of the Traveling Salesperson Problem is to minimize the distance traveled while visiting all cities exactly once.

- 111. Which of the following problems is often used as a benchmark for optimization algorithms?
 - a) 0/1 Knapsack Problem
 - b) Traveling Salesperson Problem
 - c) Reliability Design
 - d) Optimal Binary Search Trees

Answer: B

Explanation: The Traveling Salesperson Problem is often used as a benchmark for optimization algorithms due to its complexity.

112.	What does "Reliability Design" refer to in the context of Dynamic Programming?
	a) Designing reliable software
	b) Designing reliable hardware
	c) Designing reliable algorithms
	d) Designing reliable networks
	Answer: C
	Explanation: Reliability Design in Dynamic Programming refers to designing reliable algorithms or systems.
113.	Which Dynamic Programming approach involves storing previously computed results to avoid recomputation?
	a) Top-down approach
	b) Bottom-up approach
	c) Divide and conquer
	d) Greedy approach
	Answer: B
	Explanation: The Bottom-up approach in Dynamic Programming involves storing results in a table to avoid recomputation.
114.	In Dynamic Programming, what is "Memoization"?
	a) Memorizing mathematical formulas
	b) Storing intermediate results
	c) Storing program instructions
	d) Computing mathematical constants

Answer: B

Explanation: Memoization in Dynamic Programming involves storing intermediate results of subproblems to avoid redundant calculations.

- 115. Which of the following is a common technique to implement Dynamic Programming?
 - a) A) Recursion
 - b) B) Loops
 - c) C) Conditional statements
 - d) D) All of the above

Answer: D

Explanation: Dynamic Programming can be implemented using recursion, loops, and conditional statements as needed.

- 116. What is the time complexity of the naive recursive approach to the 0/1 Knapsack Problem?
 - a) O(n)
 - b) O(2^n)
 - c) O(log n)
 - d) O(n^2)

Answer: B

Explanation: The naive recursive approach to the 0/1 Knapsack Problem has a time complexity of $O(2^n)$.

- 117. Which approach is used to solve the Traveling Salesperson Problem when there are a small number of cities?
 - a) Brute Force

	b) Dynamic Programming
	c) Greedy Algorithm
	d) Genetic Algorithm
	Answer: A
	Explanation: Brute Force is used when there are a small number of cities in the Traveling Salesperson Problem.
118.	Which data structure is typically used to implement the dynamic programming table for the $0/1$ Knapsack Problem?
	a) Array
	b) Linked List
	c) Stack
	d) Queue
	Answer: A
	Explanation: An array is typically used to implement the dynamic programming table for the 0/1 Knapsack Problem.
119.	In the context of Dynamic Programming, what is a "State Transition Equation"?
	a) An equation to transition between program states
	b) An equation to calculate optimal subproblem solutions
	c) An equation to determine the initial state
	d) An equation to compute the final result
	Answer: B
	Explanation: A State Transition Equation in Dynamic Programming is used to calculate the optimal subproblem solutions.

120.	What is the primary objective in the 0/1 Knapsack Problem?
	a) Minimize weight
	b) Maximize value
	c) Maximize weight
	d) Minimize value
	Answer: B
	Explanation: The primary objective in the $0/1$ Knapsack Problem is to maximize the total value of selected items while not exceeding the weight capacity
121.	Which algorithm is commonly used to solve the Optimal Binary Search Trees problem?
	a) Kruskal's algorithm
	b) Prim's algorithm
	c) Huffman coding algorithm
	d) Dynamic Programming
	Answer: D
	Explanation: Dynamic Programming is commonly used to solve the Optimal Binary Search Trees problem.
122.	In the context of Dynamic Programming, what does "Bottom-up" refer to?
	a) Starting from the top
	b) Starting from the bottom
	c) Starting from the middle
	d) Starting from the sides

Answer: B

Explanation: The "Bottom-up" approach in Dynamic Programming starts from the bottom and builds solutions iteratively.

- 123. Which of the following is NOT a common application of the Floyd-Warshall algorithm?
 - a) Shortest path in a graph
 - b) Transitive closure
 - c) Minimum spanning tree
 - d) All pairs shortest path

Answer: C

Explanation: The Floyd-Warshall algorithm is not commonly used for finding the Minimum Spanning Tree.

- 124. Which Dynamic Programming problem involves determining the reliability of a network or system?
 - a) 0/1 Knapsack Problem
 - b) Traveling Salesperson Problem
 - c) Reliability Design
 - d) Optimal Binary Search Trees

Answer: C

Explanation: The problem of determining the reliability of a network or system is known as Reliability Design.

125. What is the primary objective of the Reliability Design problem?

- a) Maximize reliability
- b) Minimize reliability
- c) Maximize cost efficiency
- d) Minimize system complexity

Answer: A

Explanation: The primary objective of the Reliability Design problem is to maximize reliability while meeting other constraints.

