### **DESIGN AND ANALYSIS OF ALGORITHMS**

B.Tech. III Year I Sem.

L T P C
3 0 0 3

# Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Advanced Data Structures".

# **Course Objectives:**

- Introduces the notations for analysis of the performance of algorithms.
- Introduces the data structure disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst-, average-, and bestcase analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

### **Course Outcomes:**

- Ability to analyze the performance of algorithms
- Ability to choose appropriate data structures and algorithm design methods for a specified application
- Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

#### UNIT - I

**Introduction:** Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

**Divide and conquer**: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

### UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms

**Backtracking**: General method, applications, n-queen's problem, sum of subsets problem, graph coloring

#### **UNIT - III**

**Dynamic Programming**: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

#### **UNIT - IV**

**Greedy method:** General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

#### **UNIT - V**

**Branch and Bound**: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

**NP-Hard and NP-Complete problems**: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

### **TEXT BOOK:**

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

# **REFERENCE BOOKS:**

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia. John Wilev and sons.