

Short Questions

- 1. What are the different application areas of computer graphics?
- 2. What components constitute a graphics system?
- 3. What are video-display devices?
- 4. Describe the difference between raster-scan systems and random-scan systems.
- 5. What are graphics monitors and workstations?
- 6. What are input devices in computer graphics?
- 7. What are output primitives in computer graphics?
- 8. What is the Digital Differential Analyzer (DDA) used for?
- 9. Explain Bresenham's Algorithm.
- 10. What are circle-generating algorithms?
- 11. Describe the scan-line algorithm for polygon filling.
- 12. What are boundary-fill and flood-fill algorithms?
- 13. What are the basic 2-D geometric transformations?
- 14. Explain translation transformation.
- 15. What is scaling transformation?
- 16. Describe rotation transformation.
- 17. What is reflection transformation?
- 18. Explain shear transformation.
- 19. How are transformations represented using matrices?
- 20. What are homogeneous coordinates?
- 21. What are composite transforms?
- 22. How do transformations between coordinate systems work?
- 23. What is the viewing pipeline in computer graphics?
- 24. Explain the concept of point clipping.
- 25. What is the Cohen-Sutherland line clipping algorithm?
- 26. Describe polygon clipping.
- 27. What are the methods for 3-D object representation?
- 28. What are polygon surfaces?
- 29. What are quadric surfaces?
- 30. What is spline representation?
- 31. Explain the characteristics of Hermite curves.
- 32. What are Bezier curves?
- 33. Describe B-Spline curves.
- 34. What is the significance of homogeneous coordinates?
- 35. How does the midpoint circle algorithm work?
- 36. What are translation transformations?
- 37. Describe scaling transformations.

- 38. What are rotation transformations?
- 39. What is reflection transformation used for?
- 40. Explain shear transformation.
- 41. What are composite transforms?
- 42. How do transformations between coordinate systems facilitate rendering?
- 43. What is the viewing pipeline?
- 44. What is point clipping?
- 45. Explain the Cohen-Sutherland line clipping algorithm.
- 46. Describe polygon clipping.
- 47. What are the different methods for 3-D object representation?
- 48. How are quadric surfaces represented?
- 49. What is the significance of spline representation?
- 50. Describe the characteristics of Hermite curves.
- 51. What are Bezier curves?
- 52. What are B-Spline curves?
- 53. What are homogeneous coordinates?
- 54. How does the midpoint circle algorithm efficiently draw circles?
- 55. What are translation transformations?
- 56. What are scaling transformations?
- 57. What are rotation transformations?
- 58. What is reflection transformation?
- 59. Explain shear transformation.
- 60. How are transformations represented using matrices?
- 61. What are homogeneous coordinates?
- 62. What are composite transforms?
- 63. How do transformations between coordinate systems facilitate rendering?
- 64. What is the viewing pipeline?
- 65. What is point clipping?
- 66. What is the Cohen-Sutherland line clipping algorithm?
- 67. Describe polygon clipping.
- 68. What are the different methods for 3-D object representation?
- 69. How are quadric surfaces represented?
- 70. What is the significance of spline representation?
- 71. Describe the characteristics of Hermite curves.
- 72. What are Bezier curves?
- 73. What are B-Spline curves?
- 74. What are homogeneous coordinates?
- 75. How does the midpoint circle algorithm efficiently draw circles?
- 76. What are translation transformations?
- 77. What are scaling transformations?

- 78. What are rotation transformations?
- 79. What is reflection transformation?
- 80. Explain shear transformation.
- 81. What are composite transforms?
- 82. How do transformations between coordinate systems facilitate rendering?
- 83. What is the viewing pipeline?
- 84. What is point clipping?
- 85. What is the Cohen-Sutherland line clipping algorithm?
- 86. Describe polygon clipping.
- 87. What are the different methods for 3-D object representation?
- 88. How are quadric surfaces represented?
- 89. What is the significance of spline representation?
- 90. Describe the characteristics of Hermite curves.
- 91. What are Bezier curves?
- 92. What are B-Spline curves?
- 93. What are homogeneous coordinates?
- 94. How does the midpoint circle algorithm efficiently draw circles?
- 95. What are translation transformations?
- 96. What are scaling transformations?
- 97. What are rotation transformations?
- 98. What is reflection transformation?
- 99. Explain shear transformation.
- 100. What are composite transforms?
- 101. How do transformations between coordinate systems facilitate rendering?
- 102. What is the viewing pipeline?
- 103. What is point clipping?
- 104. What is the Cohen-Sutherland line clipping algorithm?
- 105. Describe polygon clipping.
- 106. What are the different methods for 3-D object representation?
- 107. How are quadric surfaces represented?
- 108. What is the significance of spline representation?
- 109. Describe the characteristics of Hermite curves.
- 110. What are Bezier curves?
- 111. What are B-Spline curves?
- 112. What are homogeneous coordinates?
- 113. How does the midpoint circle algorithm efficiently draw circles?
- 114. What are translation transformations?
- 115. What are scaling transformations?
- 116. What are rotation transformations?

- 117. What is reflection transformation?
- 118. Explain shear transformation.
- 119. What are composite transforms?
- 120. How do transformations between coordinate systems facilitate rendering?
- 121. What is the viewing pipeline?
- 122. What is point clipping?
- 123. What is the Cohen-Sutherland line clipping algorithm?
- 124. Describe polygon clipping.
- 125. What is the significance of polygon clipping in computer graphics?