

Short questions

- 1. What is the 0/1 knapsack problem?
- 2. Define the All Pairs Shortest Path problem.
- 3. Explain the Traveling Salesperson Problem (TSP).
- 4. What is reliability design in the context of optimization problems?
- 5. How does the greedy method work in optimization?
- 6. Describe the application of the greedy method in job sequencing with deadlines.
- 7. How is the greedy method applied to the knapsack problem?
- 8. What are Minimum Cost Spanning Trees (MCSTs)?
- 9. Explain the application of the greedy method in finding MCSTs.
- 10. What is the Single Source Shortest Path problem?
- 11. Discuss basic traversal techniques for binary trees.
- 12. Explain traversal techniques for graphs.
- 13. What are connected components in a graph?
- 14. Define biconnected components in a graph.
- 15. How does the Branch and Bound method work in optimization?
- 16. Describe the application of Branch and Bound in the Traveling Salesperson Problem.
- 17. Explain the application of Branch and Bound in the 0/1 knapsack problem.
- 18. What is LC Branch and Bound solution?
- 19. Describe FIFO Branch and Bound solution.
- 20. Define NP-Hard problems.
- 21. Differentiate between NP-Hard and NP-Complete problems.
- 22. What are non-deterministic algorithms?

- 23. Explain the concept of NP-Complete classes.
- 24. What is Cook's theorem?
- 25. How does the 0/1 knapsack problem differ from the fractional knapsack problem?
- 26. Discuss the dynamic programming approach to solving the All Pairs Shortest Path problem.
- 27. What are some practical applications of the Traveling Salesperson Problem?
- 28. Explain how reliability design is related to optimization problems in engineering.
- 29. Provide an example where the greedy method may not yield an optimal solution.
- 30. How does job sequencing with deadlines differ from other scheduling problems?
- 31. Describe a scenario where the greedy method is not suitable for solving the knapsack problem.
- 32. What are some algorithms for finding Minimum Cost Spanning Trees?
- 33. How do you identify the shortest path in a graph using Dijkstra's algorithm?
- 34. What is the difference between depth-first search and breadth-first search in binary trees?
- 35. Explain how depth-first search can be implemented in graphs.
- 36. Discuss the concept of connected components in the context of graph theory.
- 37. How do you detect biconnected components in a graph?
- 38. What are some heuristics used in Branch and Bound algorithms?
- 39. Describe a scenario where the Branch and Bound method can be applied in real life.
- 40. How does the Traveling Salesperson Problem relate to route optimization in logistics?
- 41. Explain the importance of bounding in Branch and Bound algorithms.

- 42. What are some characteristics of NP-Hard problems that make them difficult to solve?
- 43. Can NP-Hard problems be solved in polynomial time?
- 44. How do you construct a non-deterministic algorithm for a given problem?
- 45. Provide examples of problems classified as NP-Complete.
- 46. Describe the significance of Cook's theorem in complexity theory.
- 47. Explain the concept of approximation algorithms in optimization.
- 48. Discuss the time complexity of the dynamic programming approach for the knapsack problem.
- 49. How do you handle constraints in the 0/1 knapsack problem?
- 50. What are Floyd-Warshall and Johnson's algorithms used for in graph theory?
- 51. Compare the time complexity of Floyd-Warshall and Dijkstra's algorithms.
- 52. How can the Traveling Salesperson Problem be solved using dynamic programming?
- 53. Describe an example where the greedy method is suitable for solving an optimization problem.
- 54. How do you define the objective function in the context of optimization problems?
- 55. Explain the concept of backtracking in optimization algorithms.
- 56. Discuss the role of pruning in improving the efficiency of Branch and Bound algorithms.
- 57. Provide examples of real-world applications where NP-Hard problems arise.
- 58. What are some techniques used to reduce NP-Hard problems to more manageable forms?
- 59. How do you prove that a problem belongs to the NP-Complete class?
- 60. Discuss the trade-offs between exact and heuristic solutions in optimization problems.
- 61. Explain the concept of relaxation in optimization algorithms.

- 62. Describe the procedure for solving the 0/1 knapsack problem using dynamic programming.
- 63. What are some common variants of the Traveling Salesperson Problem?
- 64. How does the concept of greediness influence the selection process in the greedy method?
- 65. Discuss the role of lower bounds in Branch and Bound algorithms.
- 66. What are some strategies for improving the performance of the Floyd-Warshall algorithm?
- 67. Explain the concept of vertex cover in graph theory.
- 68. How do you determine if a problem is NP-Hard?
- 69. Describe the process of pruning in the context of Branch and Bound algorithms.
- 70. Discuss the difference between constructive and non-constructive algorithms.
- 71. How can the concept of memoization be applied to optimize recursive algorithms?
- 72. Provide examples of NP-Hard problems in scheduling and resource allocation.
- 73. Discuss the limitations of the greedy method in solving optimization problems.
- 74. How do you handle negative edge weights in Dijkstra's algorithm?
- 75. Describe the concept of a feasible solution in optimization.
- 76. What are some approaches for dealing with infeasible solutions in optimization?
- 77. Explain the significance of the traveling salesman problem in computational complexity theory.
- 78. Discuss the concept of vertex coloring in graph theory.
- 79. How can local search algorithms be used to solve optimization problems?
- 80. Describe a scenario where the Knapsack problem arises in real-world decision-making.

- 81. How do you determine the optimality of a solution in the context of optimization problems?
- 82. What are some practical implications of NP-Hardness in problem-solving?
- 83. Discuss the concept of relaxation in the context of optimization algorithms.
- 84. How do you construct a feasible solution in the context of the knapsack problem?
- 85. Describe the process of dynamic programming in solving optimization problems.
- 86. How does the concept of dominance help in pruning the search space in Branch and Bound algorithms?
- 87. Discuss the concept of duality in linear programming.
- 88. Explain the role of the objective function in optimization problems.
- 89. What are some techniques for avoiding redundant computations in dynamic programming?
- 90. How do you handle constraints in the branch and bound method?
- 91. Describe the process of constructive search in optimization algorithms.
- 92. What are some common techniques for solving NP-Hard problems?
- 93. Discuss the significance of the P vs. NP problem in computer science.
- 94. How can you determine if a given problem is NP-Complete?
- 95. Explain the concept of vertex degree in graph theory.
- 96. Discuss the concept of convexity in optimization problems.
- 97. What are some common heuristics used in the Traveling Salesperson Problem?
- 98. How does the concept of bounding help in pruning the search space in Branch and Bound algorithms?
- 99. Describe a scenario where the Traveling Salesperson Problem is applicable in real life.
- 100. What are some techniques for handling multiple objectives in optimization?

- 101. Explain the concept of feasibility in optimization problems.
- 102. Discuss the concept of edge connectivity in graph theory.
- 103. How do you handle non-integer values in the knapsack problem?
- 104. Describe the process of forward checking in constraint satisfaction problems.
- 105. What are some common approaches for solving the Traveling Salesperson Problem?
- 106. Discuss the concept of relaxation in the context of optimization algorithms.
- 107. How can linear programming be used to solve optimization problems?
- 108. What are some common techniques for solving NP-Hard problems approximately?
- 109. Explain the concept of a clique in graph theory.
- 110. Discuss the role of pruning in improving the efficiency of search algorithms.
- 111. How do you handle uncertainty in optimization problems?
- 112. Describe the process of variable selection in optimization algorithms.
- 113. What are some common techniques for solving the Knapsack problem?
- 114. Explain the concept of cycle detection in graph theory.
- 115. Discuss the concept of linearity in linear programming.
- 116. How do you handle conflicting objectives in optimization problems?
- 117. Describe the process of constraint propagation in constraint satisfaction problems.
- 118. What are some common techniques for solving the Traveling Salesperson Problem heuristically?
- 119. Explain the concept of cutset in graph theory.
- 120. Discuss the concept of convex hull in optimization problems.
- 121. How do you handle multiple constraints in optimization problems?
- 122. Describe the process of local search in optimization algorithms.

- 123. What are some common techniques for solving NP-Hard problems exactly?
- 124. Explain the concept of arc consistency in constraint satisfaction problems.
- 125. Discuss the concept of Pareto optimality in multi-objective optimization.

